INFLUENCE OF FIBER ASPECT RATIO ON SHEAR CAPACITY OF DEEP BEAMS USING ARTIFICIAL NEURAL NETWORK TECHNIQUE

Authors

  • S. Kute
  • U. Naik
Abstract:

This paper deals with the effect of fiber aspect ratio of steel fibers on shear strength of steel fiber reinforced concrete deep beams loaded with shear span to depth ratio less than two using the artificial neural network technique. The network model predicts reasonably good results when compared with the equation proposed by previous researchers. The parametric study involves deep beams of M55 grade concrete with fiber volume fraction 0.5% to 2% of fiber aspect ratio ranging from 50 to 100 and longitudinal steel percentage varying from 0% to 2.5%. The analysis reveals that the fiber aspect ratio also affects the shear strength and needs to be combined with fiber volume fraction.  

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

Determination of Lateral load Capacity of Steel Shear Walls Based on Artificial Neural Network Models

In this paper, load-carrying capacity in steel shear wall (SSW) was estimated using artificial neural networks (ANNs). The SSW parameters including load-carrying capacity (as ANN’s target), plate thickness, thickness of stiffener, diagonal stiffener distance, horizontal stiffener distance and gravity load (as ANN’s inputs) are used in this paper to train the ANNs. 144 samples data of each of th...

full text

Forecasting of Covid-19 cases based on prediction using artificial neural network curve fitting technique

Artificial neural network is considered one of the most efficient methods in processing huge data sets that can be analyzed computationally to reveal patterns, trends, prediction, forecasting etc. It has a great prospective in engineering as well as in medical applications. The present work employs artificial neural network-based curve fitting techniques in prediction and forecasting of the Cov...

full text

assessment of the efficiency of s.p.g.c refineries using network dea

data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...

Predicting Shear Capacity of Panel Zone Using Neural Network and Genetic Algorithm

Investigating the behavior of the box-shaped column panel zone has been one of the major concerns of scientists in the field.  In the American Institute of Steel Construction the shear capacity of I-shaped cross- sections with low column thickness is calculated. This paper determines the shear capacity of panel zone in steel columns with box-shaped cross-sections by using artificial neural netw...

full text

Strut-and-Tie Method for Prediction of Ultimate Shear Capacity of Shear-Strengthened RC deep beams with FRP

The main objective of this study is to propose the Strut-and-Tie method (STM) to predict the shear capacity of simply supported RC deep beams shear-strengthened with carbon fiber reinforced polymers (CFRP). It is assumed that, the total carried shear force by shear-strengthened RC deep beam provided by three independent resistance, namely diagonal concrete strut due to Strut-and-tie mechanism, ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 1

pages  81- 91

publication date 2017-01

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023